vendredi 8 novembre 2013

Big data, bide data, smart data

Big data ou bide data ?
Avec l’apparition de la promesse big data, tout le monde se remet à parler de la donnée, de son importance et des moyens humains, techniques ou financiers à mettre en face de ce nouveau graal. Reposons les pieds sur terre et revenons quelques minutes aux basiques.

Small data is beautiful
  • Qui sont nos consommateurs, nos adhérents, nos membres ?
    De quelles données sociodémographiques disposons nous ? Dans quel état sont nos données « signalétiques » ? Ces données forment le socle de base de notre relation client, or, de quelles informations dispose-t-on ? Les coordonnées sont-elles complètes, propres et à jour ? Dispose-t-on des e-mails de nos membres ? des numéros de mobiles ? A-t-on fait signer les optin nécessaires en séparant les medias et les types de messages (gestion du compte, offres marketing etc…) ?
  • Qu’ont-ils acheté, utilisé, consommé ?
    Quelles sont les données comportementales disponibles ? Sont-elles propres ? Quelle est leur granularité ? Dispose t’on des données du total ticket ou du détail du panier qu’il s’agisse de produits achetés ou de services comme la musique ou un film. Sur quelle longueur d’historique porte la profondeur de ces données ?
  • Ou en sont-ils de leurs points ?
    Identifie-t-on les gains des différents types de points : points standard ou bonus ? Conserve-t-on la consommation de ces points et le type de primes commandées ?
  • Quelles propositions ont-ils reçu ? Ce qui les a intéressés ?
    Peut-on connaitre les communications reçues, la pression commerciale ? Peut-on déterminer leurs centres d’intérêt à travers les communications ouvertes, les coupons consommés ?
  • Quels contacts avons-nous avec eux ?
    Les contacts entrants – téléphone, mails, courriers, visites en magasin ou en agence, recours au SAV - et sortants, leur nature et les messages échangés ?
  • Au final
    • Dispose-t-on de données synthétiques résumant la valeur, le potentiel et le profil du client ?
    • A-t-on mis en place des scores d’appétence ou d’attrition ? Des segmentations ?
    • L’ensemble de ces données sont elles interfacées et regroupées dans une vue 360 ?

A ce premier lot, de nouvelles données sont venus s’adjoindre 
  • Avec le web, se sont ajoutées les données de circulation, les « web-analytics » : Historise t’on ces données ? Les membres, porteurs, adhérents sont-ils identifiés ? Connaît-on le chemin suivi par le client sur le site web? les produits qu’il a consultés ? Peut-on croiser ces informations avec les données comportementales (achat, consommation) ?
  • Avec le mobile c’est l’explosion les données de localisation. Ces données existaient déjà pour la personnalisation de certains sites mais la connexion en mobilité via notamment les applications amplifient largement ce phénomène.
  • La vague suivante provient des réseaux sociaux et des données liées aux profils et activités sur ces médias et enfin dernière vague en date; le « quantified-self ». Viendront ensuite le M2M et les objets connectés.


Enfin, autour de ces données « personnelles » viennent s’adjoindre des données qu’on peut qualifier de « contextuelles ». Ces informations « générales » sur l’environnement global, s(er)ont portées par la vague de l’open data.
  •  En fait on fait déjà de l’open data sans le savoir : Le géomarketing avec l’analyse de la composition des zones géographiques (zones de chalandises de magasins ou recherche d’implantation, qualification de bases clients etc…) ; l’intégration de la météo dans les prévisions de chiffres d’affaires ou les animations commerciales ; la prise en compte de la circulation sur les GPS (et avant ça via bison-futé) sont d’ores et déjà autant des utilisations courantes de l’open data.  

Big data, big browser.
La masse d’informations collectées que l’on peut regrouper sous le terme de big data se caractérise par sa volumétrie explosive collectées, leur variabilité à savoir l’extrême diversité des formats et contenus, et la vitesse de traitement nécessaire  
  • Volume : Les volumétries présentent une progression exponentielle. Le nombre de variables suivies et donc d’informations captées a augmenté drastiquement (comportement, attitudes, communications etc..).  Nous sommes, ainsi, passés d’un « bas de ticket » aux détails du panier, des produits achetés aux produits consultés, de mesures ponctuelles (achat) à des mesures continues (localisation).
  • Variabilité : Au sein de ces différentes données, on devra donc intégrer d’une part des données dites structurées comme les adresses, les transactions, les connexions, etc.. et d’autre part les données « non structurées » comme des textes de mails ou de courrier, des posts ou commentaires sur les réseaux sociaux. Sans oublier, bien sur, le son, les images et les vidéos.
  • Vitesse : Enfin, les flux entrants d’alimentation de données, provenant des capteurs clients, sont passés d’un mode batch au temps réel. De même les flux « sortants » que nous émettons vers le consommateur sont eux aussi passés en temps réel pour recommander un produit en fonction du produit regardé sur un site, pour imprimer un coupon en caisse qui tienne compte du caddie qui vient d’être payé, pour envoyer un message push sur une application en fonction de la localisation du porteur.

Big data ou smart data ?
·         Ces volumes, cette variabilité et cette exigence de temps réel, mettent sous tension les moyens informatiques et statistiques d’analyse de la data. La question se pose bien sur au plan informatique du stockage de ces données et des outils nécessaires pour traiter cette masse d’information.

·         Mais la question ne se pose t’elle pas avant tout au plan data-analysis de la qualité des informations, de leur pertinence et de l’utilité de ces différentes données pour créer de la valeur métier. Ne faut-il pas aussi s’interroger sur l’utilisation faite aujourd’hui des données déjà disponibles ? on parle maintenant d’’entreprise data-centric mais le « data déluge » annoncé  n’est pas déjà arrivé ?


·         Au-delà des déclarations, quelles capitalisations ont réellement été faites sur les données collectées ? Combien d’opérations réellement ciblées, d’offres différenciées, de communications segmentées sappuient sur l’analyse des comportements et l’évaluation des potentiels clients ? Combien de scores d’appétence ou d’attrition ? Quelles mesures de la valeur client actuelle ou évaluations de la valeur potentielle guident la politique relationnelle ?

mardi 5 novembre 2013

cycle de vie des programmes de fidélité

Les programmes de fidélisation sont des produits ou services comme les autres. Ils ont, eux aussi, un cycle de vie composé des 4 phases traditionnelles : « le lancement », « la période de croissance », « la phase de maturité », puis celle « du déclin ou de la réinvention ».

·        La phase de lancement est portée par la décision récente de GO-NO GO, souvent issue d’une volonté de direction, et d’un choix d’entreprise d’une orientation stratégique. La communication interne et externe est puissante. Les offres sont fortes. L’élan est donné.

·        Puis vient la phase de croissance avec un objectif de couverture du CA, et de maximisation du nombre d’adhérents. C’est la phase de conquête de nouveaux membres et le temps de la pédagogie pour les premiers adhérents. Le système est porté par l’euphorie du lancement et les moyens humains  et financiers. Coté clients, c’est la période de découverte et des offres puissantes portent l’adhésion et les premières périodes de fidélisation. La communication, les offres, la promotion tournent autour de l’axe fédérateur du programme.



·        Peu à peu le nombre d’adhésions plafonne puis diminue. C’est la phase de maturité. Coté clients on constate un début d’impatience par rapport à la vitesse d’accumulation de points voire de désillusion par rapport à la promesse d’origine. Les premiers points arrivent à péremption. Les offres sont plus rares et se font moins généreuses. Les résiliations ou les abandons commencent à devenir significatifs. A l’interne les interrogations sur le ROI ou l’efficacité apparaissent au moment des choix budgétaires. C’est la période de l’optimisation et des scores, du ciblage et des segmentations. En parallèle, la promotion monte en puissance et s’éloigne du programme en termes de communication.


·    Enfin, vient le moment crucial de la remise en cause. Le portefeuille commence à décroitre. Le recrutement s’épuise. La question de la rentabilité se pose clairement. L’appropriation interne baisse. C’est le moment des choix décisifs : réinventer le programme ou décliner.


Nombre de programmes, ont été lancés il y a quelques années et sont maintenant en période de maturité, voire au-delà. L’heure est au bilan pour cette vague qui a vu se généraliser ce type de programmes.  Evolution du programme, ou réinvention complète ? Stop ou encore ? Le moment est venu pour ces programmes relationnels de la mise à plat et des choix stratégiques.